Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675576

RESUMO

Hyperforatums A-D (1-4), four new polyprenylated acylphloroglucinols, together with 13 known compounds were isolated and identified from the aerial parts of Hypericum perforatum L. (St. John's wort). Their structures were confirmed with a comprehensive analysis comprising spectroscopic methods, including 1D and 2D NMR, HRESIMS, and electronic circular dichroism (ECD) calculations. Hyperforatum A featured an unusual chromene-1,4-dione bicyclic system, and hyperforatums B and C were two rare monocyclic PPAPs with five-membered furanone cores. Compound 1 exhibited a moderate inhibition effect on NO production in BV-2 microglial cells stimulated by LPS.


Assuntos
Hypericum , Floroglucinol , Hypericum/química , Floroglucinol/química , Floroglucinol/farmacologia , Floroglucinol/isolamento & purificação , Floroglucinol/análogos & derivados , Estrutura Molecular , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Óxido Nítrico/metabolismo , Óxido Nítrico/biossíntese , Linhagem Celular , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lipopolissacarídeos/farmacologia
2.
CNS Neurosci Ther ; 30(3): e14666, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38468126

RESUMO

AIM: To explore the neuroprotective potential of hyperforin and elucidate its underlying molecular mechanisms involved in its therapeutic effects against vascular cognitive impairment (VCI). METHODS: The active compounds and possible targets of Hypericum perforatum L. that may be effective against VCI were found by network pharmacology in this research. We utilized bilateral common carotid artery occlusion (BCCAO) surgery to induce a VCI mouse model. Morris water maze (MWM) and Y-maze tests were used to assess VCI mice's cognitive abilities following treatment with hyperforin. To evaluate white matter lesions (WMLs), we utilized Luxol fast blue (LFB) stain and immunofluorescence (IF). Neuroinflammation was assessed using IF, western blot (WB), and enzyme-linked immunosorbent assay (ELISA). The effects of hyperforin on microglia were investigated by subjecting the BV2 microglial cell line to oxygen-glucose deprivation/reperfusion (OGD/R) stimulation. The expressions of VEGFR2 , p-SRC, SRC, VEGFA, and inflammatory markers including IL-10, IL-1ß, TNF-α, and IL-6 were subsequently assessed. RESULTS: The VEGFR2 /SRC signaling pathway is essential for mediating the protective properties of hyperforin against VCI according to network pharmacology analysis. In vivo findings demonstrated that hyperforin effectively improved BCCAO-induced cognitive impairment. Furthermore, staining results showed that hyperforin attenuated WMLs and reduced microglial activation in VCI mice. The hyperforin treatment group's ELISA results revealed a substantial decrease in IL-1ß, IL-6, and TNF-α levels. According to the results of in vitro experiments, hyperforin decreased the release of pro-inflammatory mediators (TNF-α, IL-6, and IL-1ß) and blocked microglial M1-polarization by modulating the VEGFR2 /SRC signaling pathway. CONCLUSION: Hyperforin effectively modulated microglial M1 polarization and neuroinflammation by inhibiting the VEGFR2 /SRC signaling pathways, thereby ameliorating WMLs and cognitive impairment in VCI mice.


Assuntos
Disfunção Cognitiva , Floroglucinol/análogos & derivados , Terpenos , Substância Branca , Camundongos , Animais , Microglia , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Substância Branca/metabolismo , Interleucina-6/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
3.
J Microbiol Biotechnol ; 34(4): 812-827, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38480001

RESUMO

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.


Assuntos
Glicogênio Sintase Quinase 3 beta , Peróxido de Hidrogênio , Estresse Oxidativo , Floroglucinol , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , beta Catenina , Humanos , Floroglucinol/farmacologia , Floroglucinol/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Derme/citologia , Derme/metabolismo , Derme/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Alopecia/tratamento farmacológico , Alopecia/metabolismo
4.
Toxicol Lett ; 393: 1-13, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219807

RESUMO

St. John's Wort preparations are used for the treatment of mild to moderate depression. They are usually well tolerated but can cause adverse reactions including liver toxicity in rare cases. To date, the mechanism(s) underlying the hepatotoxicity of St. John's Wort extracts are poorly investigated. We studied the hepatocellular toxicity of hypericin and hyperforin as the two main ingredients of St. John's Wort extracts in HepG2 and HepaRG cells and compared the effects to citalopram (a synthetic serotonin uptake inhibitor) with a special focus on mitochondrial toxicity and oxidative stress. In HepG2 cells, hypericin was membrane-toxic at 100 µM and depleted ATP at 20 µM. In HepaRG cells, ATP depletion started at 5 µM. In comparison, hyperforin and citalopram were not toxic up to 100 µM. In HepG2 cells, hypericin decreased maximal respiration starting at 2 µM and mitochondrial ATP formation starting at 10 µM but did not affect glycolytic ATP production. Hypericin inhibited the activity of complex I, II and IV of the electron transfer system and caused mitochondrial superoxide accumulation in cells. The protein expression of mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin 2 (TRX2) and total and reduced glutathione decreased in cells exposed to hypericin. Finally, hypericin diminished the mitochondrial DNA copy number and caused cell necrosis but not apoptosis. In conclusion, hypericin, but not hyperforin or citalopram, is a mitochondrial toxicant at low micromolar concentrations. This mechanism may contribute to the hepatotoxicity occasionally observed in susceptible patients treated with St. John's Wort preparations.


Assuntos
Antracenos , Carcinoma Hepatocelular , Doença Hepática Induzida por Substâncias e Drogas , Hypericum , Neoplasias Hepáticas , Perileno/análogos & derivados , Floroglucinol/análogos & derivados , Terpenos , Humanos , Extratos Vegetais/toxicidade , Extratos Vegetais/uso terapêutico , Hypericum/toxicidade , Citalopram/toxicidade , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Trifosfato de Adenosina
5.
J Appl Toxicol ; 44(5): 720-732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38152000

RESUMO

Skin oxidative stress results in structural damage, leading to premature senescence, and pathological conditions such as inflammation and cancer. The plant-derived prenylated pyrone-phloroglucinol heterodimer arzanol, isolated from Helichrysum italicum ssp. microphyllum (Willd.) Nyman aerial parts, exhibits anti-inflammatory, anticancer, antimicrobial, and antioxidant activities. This study explored the arzanol protection against hydrogen peroxide (H2O2) induced oxidative damage in HaCaT human keratinocytes in terms of its ability to counteract cytotoxicity, reactive oxygen species (ROS) generation, apoptosis, and mitochondrial membrane depolarization. Arzanol safety on HaCaT cells was preliminarily examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic observation. The arzanol pre-incubation (5-100 µM, for 24 h) did not induce cytotoxicity and morphological alterations. The phloroglucinol, at 50 µM, significantly protected keratinocytes against cytotoxicity induced by 2 h-incubation with 2.5 and 5 mM H2O2, decreased cell ROS production induced by 1 h-exposure to all tested H2O2 concentrations (0.5-5 mM), as determined by the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay, and lipid peroxidation (thiobarbituric acid reactive substances [TBARS] method). The 2-h incubation of keratinocytes with H2O2 determined a significant increase of apoptotic cells versus control cells, evaluated by NucView® 488 assay, from the dose of 2.5 mM. Moreover, an evident mitochondrial membrane potential depolarization, monitored by fluorescent mitochondrial dye MitoView™ 633, was assessed at 5 mM H2O2. Arzanol pre-treatment (50 µM) exerted a strong significant protective effect against apoptosis, preserving the mitochondrial membrane potential of HaCaT cells at the highest H2O2 concentrations. Our results validate arzanol as an antioxidant agent for the prevention/treatment of skin oxidative-related disorders, qualifying its potential use for cosmeceutical and pharmaceutical applications.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Floroglucinol/análogos & derivados , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/toxicidade , Pironas/química , Pironas/farmacologia , Estresse Oxidativo , Queratinócitos , Floroglucinol/farmacologia , Floroglucinol/química , Apoptose
6.
J Biochem Mol Toxicol ; 36(9): e23138, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35838116

RESUMO

Glioma is the foremost recurrent type of brain tumor in humans; in particular, glioblastoma (GBM) is the main form of brain tumor (GBM) that is highly proliferative and impervious to apoptosis. Triphlorethol-A (TA), a phlorotannin isolated from Ecklonia cava, exhibited cytoprotective, antioxidant, and anticancer properties. However, the exact molecular action of TA in the U251 human GBM cells remains unknown. This may be the first report on the antiproliferative and apoptotic mechanisms of TA on GBM. The cytotoxicity, intracellular reactive oxygen species (ROS), matrix metalloproteinase (MMP), and cell apoptosis activity of TA have been evaluated by the MTT assay and by DCFH-DA, Rh-123, AO/EB, and western blot analysis. The results obtained showed that TA abridged the viability of U251 cells, while MMP increased apoptosis by increasing the ROS levels in a time-dependent manner. The results showed that a reduction in U251 cell proliferation was associated with the regulation of JAK2/STAT3 and p38 MAPK/ERK signaling pathways. TA was found to suppress pJAK, pSTAT3, p38 MAPK, and pERK phosphorylation, thereby causing Bax/Bcl-2 imbalance, activating the caspase cascade and cytochrome c, and inducing apoptosis. Our findings showed that the suppression of JAK2/STAT3 and p38 MAPK/ERK signaling by TA results in cell growth arrest and stimulation of apoptosis in GBM cells. These studies justify the protective remedy of TA against GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Antioxidantes/metabolismo , Apoptose/fisiologia , Neoplasias Encefálicas/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citocromos c/metabolismo , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Janus Quinase 2 , Sistema de Sinalização das MAP Quinases , Floroglucinol/análogos & derivados , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328403

RESUMO

The therapeutic activities of natural plant extracts have been well known for centuries. Many of them, in addition to antiviral and antibiotic effects, turned out to have anti-tumor activities by targeting different signaling pathways. The canonical Wnt pathway represents a major tumorigenic pathway deregulated in numerous tumor entities, including colon cancer. Here, we investigated the acylphloroglucinols hyperforin (HF) from St. John's wort (Hypericum perforatum L.) and myrtucommulone A (MC A) from myrtle (Myrtus communis) and semi-synthetic derivatives thereof (HM 177, HM 297, HM298) for their effects on Wnt/ß-catenin signaling. None of these substances revealed major cytotoxicity on STF293 embryonic kidney and HCT116 colon carcinoma cells at concentrations up to 10 µM. At this concentration, HF and HM 177 showed the strongest effect on cell proliferation, whereas MC A and HM 177 most prominently inhibited anchorage-independent growth of HCT116 cells. Western blot analyses of active ß-catenin and ß-catenin/TCF reporter gene assays in STF293 cells revealed inhibitory activities of HF, MC A and HM 177. In line with this, the expression of endogenous Wnt target genes, Axin and Sp5, in HCT116 cells was significantly reduced. Our data suggest that the acylphloroglucinols hyperforin, myrtucommulone A and its derivative HM 177 represent potential new therapeutic agents to inhibit Wnt/ß-catenin signaling in colon cancer.


Assuntos
Neoplasias do Colo , Hypericum , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos , Floroglucinol/análogos & derivados , Terpenos , Via de Sinalização Wnt , beta Catenina/metabolismo
8.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638708

RESUMO

Pharmacologic studies have revealed that polycyclic polyprenylated acylphloroglucinols (PPAPs) collectively exhibit a broad range of biological activities, including antineoplastic potential. Here, six new PPAPs, named garcixanthochymones F-K (3, 5, 7, 8, 11, and 15), together with nine known analogues were isolated from the fruits of Garcinia xanthochymus. Their structures were elucidated based on the spectroscopic data, including UV, HRESIMS, and NMR, and quantum chemical calculations. All the isolated PPAPs were tested for anti-proliferative activity against four human tumor cell lines, including SGC7901, A549, HepG2, and MCF-7. Most of the PPAPs possessed high anti-proliferative activity with IC50 values in the range of 0.89 to 36.98 µM, and significant apoptosis was observed in MCF-7 cells exposed to compounds 2 and 5. Besides, docking results showed that compounds 2 and 5 could strongly combine with the Src homology 2 (SH2) domain of STAT3 via hydrogen bond and hydrophobic interaction, which is one of the key oncogenes and crucial therapeutic targets. Furthermore, compounds 2 and 5 efficiently downregulated the expression of p-STAT3Tyr705 and pivotal effector proteins involved in oncogenic signaling pathways of MCF-7 cells.


Assuntos
Antineoplásicos Fitogênicos , Frutas/química , Garcinia/química , Proteínas de Neoplasias , Floroglucinol , Fator de Transcrição STAT3 , Transdução de Sinais/efeitos dos fármacos , Células A549 , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Células Hep G2 , Humanos , Células MCF-7 , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/química , Floroglucinol/farmacologia , Domínios Proteicos , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo
9.
J Nat Prod ; 84(7): 2059-2064, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34236871

RESUMO

Previously, Gao et al. reported the isolation and structural determination of three natural products, hyperibrin B (HB), hyperscabrone H (HH), and hyperscabrone I (HI), from Hypericum scabrum. HB and HH had different NMR spectroscopic data, but they were assigned identical structures. Furthermore, these compounds should be derived from bicyclic polyprenylated acylphloroglucinols (BPAPs) via degradation, but the assigned structural features of the prenyl and prenylmethyl groups being cis and meta-substituted on the cyclohexanone core were not consistent with their biosynthetic origin. In this note, we revise the structures of HB, HH, and HI via NMR and MS spectroscopic analyses and biosynthetic considerations. We also complete a total synthesis of the revised structure of HB as well as its analogue, hyperibrin A, to further confirm the revision. The revised structures of HB, HH, and HI have not been reported.


Assuntos
Produtos Biológicos/química , Hypericum/química , Floroglucinol/análogos & derivados , Espectroscopia de Ressonância Magnética , Estrutura Molecular
10.
Cell Death Dis ; 12(6): 560, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059630

RESUMO

Autophagy is an intracellular recycling pathway with implications for intracellular homeostasis and cell survival. Its pharmacological modulation can aid chemotherapy by sensitizing cancer cells toward approved drugs and overcoming chemoresistance. Recent translational data on autophagy modulators show promising results in reducing tumor growth and metastasis, but also reveal a need for more specific compounds and novel lead structures. Here, we searched for such autophagy-modulating compounds in a flow cytometry-based high-throughput screening of an in-house natural compound library. We successfully identified novel inducers and inhibitors of the autophagic pathway. Among these, we identified arzanol as an autophagy-modulating drug that causes the accumulation of ATG16L1-positive structures, while it also induces the accumulation of lipidated LC3. Surprisingly, we observed a reduction of the size of autophagosomes compared to the bafilomycin control and a pronounced accumulation of p62/SQSTM1 in response to arzanol treatment in HeLa cells. We, therefore, speculate that arzanol acts both as an inducer of early autophagosome biogenesis and as an inhibitor of later autophagy events. We further show that arzanol is able to sensitize RT-112 bladder cancer cells towards cisplatin (CDDP). Its anticancer activity was confirmed in monotherapy against both CDDP-sensitive and -resistant bladder cancer cells. We classified arzanol as a novel mitotoxin that induces the fragmentation of mitochondria, and we identified a series of targets for arzanol that involve proteins of the class of mitochondria-associated quinone-binding oxidoreductases. Collectively, our results suggest arzanol as a valuable tool for autophagy research and as a lead compound for drug development in cancer therapy.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Floroglucinol/análogos & derivados , Pironas/uso terapêutico , Autofagia , Humanos , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Pironas/farmacologia
11.
Sci Rep ; 11(1): 3989, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597594

RESUMO

The polyphenol content and antioxidant capacity of hyperforin and hypericin-standardized H. perforatum L. extracts may vary due to the harvest time. In this work, ethanol and ethanol-water extracts of air-dried and lyophilized flowers of H. perforatum L., collected throughout a vegetation season in central Poland, were studied. Air-dried flowers extracts had higher polyphenol (371 mg GAE/g) and flavonoid (160 mg CAE/g) content, DPPH radical scavenging (1672 mg DPPH/g), ORAC (5214 µmol TE/g) and FRAP (2.54 mmol Fe2+/g) than lyophilized flowers extracts (238 mg GAE/g, 107 mg CAE/g, 1287 mg DPPH/g, 3313 µmol TE/g and 0.31 mmol Fe2+/g, respectively). Principal component analysis showed that the collection date influenced the flavonoid and polyphenol contents and FRAP of ethanol extracts, and DPPH and ORAC values of ethanol-water extracts. The ethanol extracts with the highest polyphenol and flavonoid content protected human erythrocytes against bisphenol A-induced damage. Both high field and benchtop NMR spectra of selected extracts, revealed differences in composition caused by extraction solvent and raw material collection date. Moreover, we have shown that benchtop NMR can be used to detect the compositional variation of extracts if the assignment of signals is done previously.


Assuntos
Antioxidantes/química , Flavonoides/química , Flores/química , Hypericum/química , Extratos Vegetais/química , Polifenóis/química , Antracenos/química , Antioxidantes/farmacologia , Compostos Benzidrílicos/química , Etanol/química , Humanos , Perileno/análogos & derivados , Perileno/química , Fenóis/química , Floroglucinol/análogos & derivados , Floroglucinol/química , Extratos Vegetais/farmacologia , Polônia , Polifenóis/farmacologia , Análise de Componente Principal , Terpenos/química
12.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579052

RESUMO

Microtubules composed of α/ß tubulin heterodimers are an essential part of the cytoskeleton of eukaryotic cells and are widely regarded as targets for cancer chemotherapy. IC261, which is discovered as an ATP-competitive inhibitor of serine/threonine-specific casein kinase 1 (CK1), has shown its inhibitory activity on microtubule polymerization in recent studies. However, the structural information of the interaction between tubulin and IC261 is still unclear. Here, we provided a high-resolution (2.85 Å) crystal structure of tubulin and IC261 complex, revealed the intermolecular interaction between tubulin and IC261, and analyzed the structure-activity relationship (SAR). Subsequently, the structure of tubulin-IC261 complex was compared with tubulin-colchicine complex to further elucidate the novelty of IC261. Furthermore, eight optimal candidate compounds of new IC261-based microtubule inhibitors were obtained through molecular docking studies. In conclusion, the co-crystal structure of tubulin-IC261 complex paves a way for the design and development of microtubule inhibitor drugs.


Assuntos
Caseína Quinase I/antagonistas & inibidores , Desenho de Fármacos , Indóis/química , Microtúbulos/efeitos dos fármacos , Floroglucinol/análogos & derivados , Tubulina (Proteína)/química , Animais , Sítios de Ligação , Colchicina/química , Colchicina/metabolismo , Cristalografia por Raios X , Indóis/metabolismo , Simulação de Acoplamento Molecular , Floroglucinol/química , Floroglucinol/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Suínos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
13.
Acc Chem Res ; 54(3): 583-594, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448794

RESUMO

From the venerable Robinson annulation to the irreplaceable Diels-Alder cycloaddition, annulation reactions have fueled the progression of the field of natural product synthesis throughout the past century. In broader terms, the ability to form a cyclic molecule directly from two or more simpler fragments has transformed virtually every aspect of the chemical sciences from the synthesis of organic materials to bioconjugation chemistry and drug discovery. In this Account, we describe the evolution of our meroterpene synthetic program over the past five years, enabled largely by the development of a tailored anionic annulation process for the synthesis of hydroxylated 1,3-cyclohexanediones from lithium enolates and the reactive ß-lactone-containing feedstock chemical diketene.First, we provide details on short total syntheses of the prototypical polycyclic polyprenylated acylphloroglucinol (PPAP) natural products hyperforin and garsubellin A, which possess complex bicyclo[3.3.1]nonane architectures. Notably, these molecules have served as compelling synthetic targets for several decades and induce a number of biological effects of relevance to neuroscience and medicine. By merging our diketene annulation process with a hypervalent iodine-mediated oxidative ring expansion, bicyclo[3.3.1]nonane architectures can be easily prepared from simple 5,6-fused bicyclic diketones in only two chemical operations. Leveraging these two key chemical reactions in combination with various other stereoselective transformations allowed for these biologically active targets to be prepared in racemic form in only 10 steps.Next, we extend this strategy to the synthesis of complex fungal-derived meroterpenes generated biosynthetically from the coupling of 3,5-dimethylorsellinic acid (DMOA) and farnesyl pyrophosphate. A Ti(III)-mediated radical cyclization of a terminal epoxide was used to rapidly prepare a 6,6,5-fused tricyclic ketone which served as an input for our annulation/rearrangement process, ultimately enabling a total synthesis of protoaustinoid A, an important biosynthetic intermediate in DMOA-derived meroterpene synthesis, and its oxidation product berkeleyone A. Through a radical-based, abiotic rearrangement process, the bicyclo[3.3.1]nonane cores of these natural products could again be isomerized, resulting in the 6,5-fused ring systems of the andrastin family and ultimately delivering a total synthesis of andrastin D and preterrenoid. Notably, these isomerization transformations proved challenging when employing classic, acid-induced conditions for carbocation generation, thus highlighting the power of radical biomimicry in total synthesis. Finally, further oxidation and rearrangement allowed for access to terrenoid and the lactone-containing metabolite terretonin L.Overall, the merger of annulative diketene methodology with an oxidative rearrangement transformation has proven to be a broadly applicable strategy to synthesize bicyclo[3.3.1]nonane-containing natural products, a class of small molecules with over 1000 known members.


Assuntos
Produtos Biológicos/síntese química , Terpenos/síntese química , Produtos Biológicos/química , Compostos Bicíclicos com Pontes/química , Ciclização , Reação de Cicloadição , Conformação Molecular , Oxirredução , Floroglucinol/análogos & derivados , Floroglucinol/síntese química , Floroglucinol/química , Resorcinóis/síntese química , Resorcinóis/química , Estereoisomerismo , Terpenos/química
14.
Curr Drug Discov Technol ; 18(2): 282-292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32026778

RESUMO

BACKGROUND: Seaweeds, including marine brown algae, are traditional food sources in Asia. Phlorotannins, as the product of the polyketide pathway, are mainly found in brown algae. Different properties have been attributed to this group of marine products ranging from antiallergic to anticancer activity. Mechanism of action is not obvious for all these properties, but there are some explanations for such effects. OBJECTIVE: The current study aimed to review the phlorotannins and to assess the beneficial uses in medicine. METHODS: Different databases were explored with the exact terms "Phlorotannin", "Seaweed" and "Brown Algae". Data assembly was finalized by June 2019. The papers showing the effects of phlorotannins in medicine were gathered and evaluated for further assessment. RESULTS: General physiological aspects of phlorotannins were firstly evaluated. Different arrays of pharmacological properties ranging from anti-diabetic activity to cancer treatment were found. The mechanism of action for some of these beneficiary properties has been confirmed through rigorous examinations, but there are some features with unknown mechanisms. CONCLUSION: Phlorotannins are characterized as a multifunctional group of natural products. Potential antioxidant characteristics could be attributed to preventive and/or their curative role in various diseases.


Assuntos
Benzofuranos , Produtos Biológicos/farmacologia , Phaeophyceae/química , Floroglucinol , Taninos , Anticoagulantes/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Benzofuranos/isolamento & purificação , Benzofuranos/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Floroglucinol/análogos & derivados , Floroglucinol/isolamento & purificação , Floroglucinol/farmacologia , Taninos/química , Taninos/farmacologia
16.
Free Radic Biol Med ; 162: 383-391, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137468

RESUMO

BACKGROUND: Presently, few small molecule compounds are used as targeted therapy drugs in the treatment of colorectal cancer (CRC). It is important to identify new small molecule compounds, which can be used in the treatment of CRC. METHODS: In this study, we selected four protein molecules as drug targets: PRL-3 (Phosphatase of regenerating liver 3), CLIC4 (Chloride intracellular channel 4), THBS2 (Thrombospondin 2), and BGN (Biglycan). These protein molecules were associated with the growth and metastasis of CRC cells. Small molecular compounds were screened on the basis of their target structures. Thus, five small molecule compounds were screened from each target structure, and three small molecule compounds (macrocarpal I, sildenafil, and neoandrographolide) were found to bind with two drug targets at the same time. Further experiments revealed that the inhibition rate of macrocarpal I was the highest in CRC cells. Therefore, we determined the effects of macrocarpal I on proliferation, apoptosis, cytoskeleton of CRC cells, and subcutaneous tumorigenesis in nude mice. Furthermore, RNA-seq analysis was performed to determine the molecular mechanism through which macrocarpal I inhibited the progression of CRC. RESULTS: We found that macrocarpal I could effectively inhibit proliferation, colony formation of CRC cells, and subcutaneous tumorigenesis in nude mice. Moreover, it also destroyed the cytoskeleton of CRC cells and promoted apoptosis. The effects on kinase activity, cytoskeleton, and DNA repair is the mechanism of macrocarpal I to inhibiting CRC growth. CONCLUSION: Macrocarpal I is a small molecule compound that can effectively inhibit the progression of CRC. Thus, macrocarpal I is a therapeutic compound that shows promising results in the treatment of advanced CRC.


Assuntos
Produtos Biológicos , Neoplasias Colorretais , Animais , Apoptose , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Floroglucinol/análogos & derivados , Sesquiterpenos
17.
Bioorg Chem ; 107: 104529, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33339665

RESUMO

In our screening program for new biologically active secondary metabolites, nine new polycyclic polyprenyled acylphloroglucinols, hyperscabins D-L, together with three known compounds, were obtained from the aerial parts of Hypericum scabrum. The chemical structures of 1-9 were characterized by extensive spectroscopic analyses, nuclear magnetic resonance calculation with DP4+ probability analysis, and the electronic circular dichroism spectra were calculated. Compound 1 was an unusual prenylated acylphloroglucinol decorated with a 5-oxaspiro [4,5] deca-1,9-dione skeleton. Compound 2 was a newly identified spirocyclic polyprenylated acylphloroglucinol possessing a rare 5,5-spiroketal segment. Compounds 3, 8, and 10 (10 µM) exhibited pronounced hepatoprotective activity against d-galactosamine-induced WB-F344 cell damage in vitro assays. All test compounds (1, 3, and 7-12) demonstrated potential inhibitory effects at 10 µM against noradrenalinet ([3H]-NE) reuptake in rat brain synaptosome.


Assuntos
Antidepressivos/farmacologia , Hemiterpenos/farmacologia , Hypericum/química , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antidepressivos/síntese química , Antidepressivos/isolamento & purificação , Linhagem Celular , Hemiterpenos/síntese química , Hemiterpenos/isolamento & purificação , Inibidores da Captação de Neurotransmissores/síntese química , Inibidores da Captação de Neurotransmissores/isolamento & purificação , Inibidores da Captação de Neurotransmissores/farmacologia , Norepinefrina/metabolismo , Floroglucinol/isolamento & purificação , Componentes Aéreos da Planta/química , Substâncias Protetoras/síntese química , Substâncias Protetoras/isolamento & purificação , Ratos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
18.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143088

RESUMO

Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of ß-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic ß cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced ß-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Hypericum/química , Inflamação/tratamento farmacológico , Floroglucinol/análogos & derivados , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Floroglucinol/farmacologia , Fitoterapia
19.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081197

RESUMO

Hypericum perforatum L. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although H. perforatum produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin. The first functions as a natural antidepressant while the second is regarded as a powerful anticancer drug and as a useful compound for the treatment of Alzheimer's disease. While the antidepressant activity of SJW extracts motivate a multi-billion dollar industry around the world, the scientific interest centers around the biosynthetic pathways of hyperforin and hypericin and their medical applications. Here, we focus on what is known about these processes and evaluate the possibilities of combining state of the art omics, genome editing, and synthetic biology to unlock applications that would be of great value for the pharmaceutical and medical industries.


Assuntos
Hypericum/química , Hypericum/genética , Compostos Fitoquímicos/biossíntese , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Antracenos , Antidepressivos/farmacologia , Antineoplásicos/farmacologia , Europa (Continente) , Humanos , Hypericum/crescimento & desenvolvimento , Hypericum/metabolismo , Perileno/análogos & derivados , Perileno/farmacologia , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Terpenos/farmacologia
20.
Biomolecules ; 10(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887413

RESUMO

Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 1-4 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 1-4 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties.


Assuntos
Garcinia/química , Floroglucinol/análogos & derivados , Floroglucinol/farmacologia , Compostos Policíclicos/farmacologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acilação , Benzofenonas/química , Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator de Transcrição GATA2/metabolismo , Humanos , Interferon gama/metabolismo , Complexo Principal de Histocompatibilidade/efeitos dos fármacos , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Floroglucinol/química , Floroglucinol/isolamento & purificação , Compostos Policíclicos/química , Compostos Policíclicos/isolamento & purificação , Prenilação , Cultura Primária de Células , Fator de Transcrição STAT1/metabolismo , Terpenos/química , Terpenos/farmacologia , Transativadores/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA